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LETTER TO THE EDITOR 

On the redundancy of the zeroth law of thermodynamics 
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Abstract. Expositions of classical thermodynamics frequently include the so-called zeroth 
law amongst its ‘fundamental principles’. It is shown here that, given only the first law 
and the second law (the latter in a formulation manifestly free of any explicit or implicit 
reference to temperature), the transitivity of the relation ‘is in diathermic equilibrium with’ 
can be deduced. The zeroth law which is an assertion of just this transitivity is therefore 
redundant. The existence of the absolute temperature function of course emerges directly, 
i.e. without appeal to a prior empirical temperature. 

Classical thermodynamics is commonly held to be governed by four ‘fundamental 
principles’ known, for historical reasons, as its zeroth, first, second and third laws. 
The zeroth, first and second laws are usually taken to lie at the root of the definitions 
of temperature, energy and entropy, respectively, while the third bears a different 
character in as far as it expresses a limitation upon the behaviour of a function 
previously defined. It is not immediately clear why so privileged a status is granted 
to just this particular set of propositions. Various ‘ancillary assumptions’ are made in 
the course of exploring the consequences of the ‘laws’, but to none of these assumptions 
does one accord the status of a law. For example, in the context of standard systems 
(Buchdahl 1966)-these alone are contemplated here-the presupposition that any 
two states of such a system can always be linked adiabatically is crucial, but it is 
regarded as merely an ancillary assumption. Be that as it may, having singled out the 
zeroth, first and second laws as ‘fundamental principles’-the third is not germane to 
the present issue-the question of their mutual independence arises. 

Whether the first and second laws are viewed as independent of one another depends 
to some extent upon their formulation. If one takes the essence of the second law to 
be a characterisation of the relation of adiabatic inaccessibility, then, appropriately 
formulated (CarathCodory 1909), it is manifestly independent of the first law. 
Equivalently, one may simply introduce an empirical entropy function directly to reflect 
a certain ordering of the states of an adiabatically isolated system (Buchdahl 1962, 
Buchdahl and Greve 1962, see also Buchdahl 1966); and clearly there is no reference 
here to either the zeroth or the first law. The latter leads directly to-is equivalent 
to-the existence of an energy function; and here also there is no reference to the 
zeroth law. The original question is now reduced to this: is the zeroth law (a characteri- 
sation of mutual diathermic equilibrium) independent of the first and second laws? I 
shall show that it is not; that it is in fact already contained in them. 

The zeroth law asserts the transitivity of the relation ‘is in mutual diathermic 
equilibrium with’: if KA,  KB,  Kc are three standard systems, such that K B  and Kc 
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are separately in diathermic equilibrium with K A ,  then KB and Kc are in diathermic 
equilibrium with each other. This conventional statement of the zeroth law (e.g. Woods 
1975) needs to be supplemented with a general assumption. To state it succinctly, let 
it be agreed that, with the index J going over the range A, B, C, the system K j  shall 
have nJ coordinates, collectively denoted by XJ,  exactly one of which is a non- 
deformation coordinate. Then 

K A  and KB are in mutual diathermic equilibrium if and only if their 
states satisfy one condition f A B ( X A ,  X , )  = 0. (A) 

In this context, even when K A  and KB are spatially separated, equilibrium is said to 
be obtained when fAB = 0; meaning that their states would be unaffected if mutual 
diathermic contact were established. 

Remark. The assumption (A) has been stated in a generally accepted form. It is to 
be noted that it ostensibly concerns itself solely with the systems K A  and KB. There 
is no explicit limitation as to whether the compound system made up of K A  and KB 

is or is not adiabatically isolated from its surroundings, or whether possibly only K A  

is so isolated, interacting merely indirectly with its surroundings, i.e. via K g ;  nor is 
the possibility excluded that K A  or KB may be in contact (and in diathermic equilibrium) 
with a third system Kc. There is thus ostensibly the implication that the condition of 
being in mutual diathermic equilibrium is to be taken strictly as a two-term relation, 
and (A) is here to be understood in this sense. 

On the basis of the first and second laws alone one concludes that there exist 
functions qJ(xJ) and s j ( X j )  such that 

~ Q J  = 45 dsJ. (1) 

qJ cannot be a function of S, alone since otherwise dQ, would be a total differential. 
Except possibly at isolated points, one can make a transformation of coordinates which 
amounts to the elimination of the non-deformation coordinate and one of the deforma- 
tion coordinates from XJ in favour of qJ and s,. The coordinates of K, are therefore 
now qJ, S J ,  x,, where XJ stands collectively for the remaining n, - 2  deformation 
coordinates of K,. The condition of equilibrium (A) between K A  and KB is now 

g A B ( q A ,  qB, S E ,  X A ,  =o* ( 2 )  
Now let K* be the compound (standard) system formed of K A ,  KB, Kc, with K A  

lying between KB and Kc, i.e. K A  is in diathermic equilibrium with KB and with Kc. 
Therefore, the nA + nB + nc coordinates of the systems which make up K * are subject 
to two conditions of the kind (2), i.e. g A I = O ,  the index I going over the range BC. 
Take the coordinates of K * to be the remaining nA + nB + nc - 2 independent variables 
9.4, SA,  SE, sC, x A ,  xB,  xc. 41 is a function of q A ,  S A ,  SI, xA,  x Z  alone: qB, for instance, 
cannot depend on sc and xc, because of (A).  Thus 

41 = e A I ( q A ,  S I ,  X A ,  X I ) .  (3 1 

dQ* =c dQJ. (4) 

The ‘additivity of heat’ is represented by the equation 

There exist functions q*, s* of the coordinates of K *  such that dQ* = q* ds*, so that 
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(4) becomes 

q* ds* = qJ dSJ. ( 5 )  

Since only the three differentials dsJ appear on the right, s* can only be a function 
of sA, sB, sc( =: s)  alone. This implies that q J / q *  depends only on these variables. In 
particular, the absence of qA, x,, xB, xc from qA/q* entails that q* must have qA as a 
factor, while the other factor depends on s alone: 

4* = qAx*(s). (6) 

In turn, since 6AI/q,&*(S) depends only on s, 6AJ must be free of xA, XI and it must 
have qA as a factor: 

@AI = qA4AI (SA, ). (7) 

x * ( s )  ~ S * = ~ S A + ~ A B ( ~ A ,  S E )  ~ S B + ~ A C ( S A ,  Sc) dsc. (8) 

Consequently (5) now reads 

The form on the right is integrable. The condition of integrability reduces to 

4 A B d 4 A C / d S A -  4 A C a 4 A B I a S A =  

i.e. +AB/c$AC is independent of sA. It follows that there are functions (LA(SA), (LAI(sI) 
such that 

+AI(sA, SI) = ( L A I ( S I ) / ( L A ( ~ A )  

qA/ $A ( SA) = q B  / $AB ( SE = qC / (LAC (SC ) 1 

or equivalently 

(9) 

The first of these equations reflects the equilibrium between KA and KB. Bearing (A) 
in mind, the lack of symmetry of this equation implicit in the appearance of the index 
A on the right must be rejected, i.e. (LAB must be independent of A and likewise (LAC 
must be independent of A. In other words, there are functions (Lj(sj) such that (in 
place of (9)) 

qA/ $A( = q B /  (LE ( ) = q C  / (LC ( sC 1- (10) 

q J /  (LJ(sJ) =: T J ( q J ,  sJ ) *  (11) 

It is natural to define 

Then the mutual diathermic equilibrium of KA and KB is characterised by the equality 
of TA and 78. Here TA is a function which belongs exclusively to KA in the sense that 
its structure is determined by KA alone and it depends solely on the coordinates of 
KA. Likewise '7'8 belongs exclusively to KB and rc to Kc. On the other hand KA can 
be any standard system at all, i.e. if K t  is such a system, K t  is in diathermic equilibrium 
with K B  if and only if rB = T+,  where rt is a function which belongs exclusively to Kt.  
Then, choosing K t  to be Kc, T+ must be just the function T ~ ,  since otherwise there 
would be two distinct conditions governing the mutual diathermic equilibrium between 
KA and Kc. Therefore K B  and Kc are in equilibrium if T~ = T ~ .  According to the 
second of equations (lo), however, TB = T~ here. Therefore K B  and Kc are in mutual 
diathermic equilibrium as a consequence of K B  and Kc being separately in diathermic 
equilibrium with KA. This conclusion has been reached without any appeal to the 
zeroth law, and the latter is therefore redundant. 
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T, is thus an integrating denominator of dQ, and it has the same value for all systems 
in mutual diathermic equilibrium. Evidently 7, is the absolute temperature (function) 
and 9, the metrical entropy of K,. Absolute temperature has thus appeared directly, 
i.e. without prior reference to empirical temperature, consistent with the redundancy 
of the zeroth law. 

Finally, granted the validity of (A), including the interpretation which forms the 
subject of the remark stated above and having shown that the zeroth law in its traditional 
form is redundant one may well take the position that (A) should be taken as one of 
the basic ‘laws’-the ‘zeroth law’-rather than as an ‘ancillary assumption’. That, 
however, is just an example of the kind of semantic issue which was raised at the 
beginning of this letter. 
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